

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

Institute of Science and Technology

An Abstraction-Refinement Methodology for Reasoning about **Network Games**

Guy Avni¹, Shibashis Guha², Orna Kupferman²

¹Institute of Science and Technology, Austria

²School of Computer Science, The Hebrew University

Network games [3]

- ► A network game (NG) is played on a weighted directed graph.
- Multiple players; each player has to find a path from a source to a target.
- ► A strategy is a path of a player from her source to destination.

Find an SO and an NE in \mathcal{N} using \mathcal{N}^{\downarrow} and \mathcal{N}^{\uparrow}

- ► Theorem: If $\alpha_2 \preceq \alpha_1$, then $SO(\mathcal{N}^{\downarrow}[\alpha_2]) \leq SO(\mathcal{N}^{\downarrow}[\alpha_1])$ and $SO(\mathcal{N}^{\uparrow}[\alpha_1]) \leq SO(\mathcal{N}^{\uparrow}[\alpha_2])$, i.e. successive refinements reduces the gap between the upper and the lower bounds of an SO in \mathcal{N} . **Abstract NE**: An NE in \mathcal{N}^{\downarrow} such that no player has beneficial deviation
- ▶ In a **cost-sharing game** (CS-NG), the players share the cost of an edge.
- ► A profile is a tuple of strategies, one for each player.
- ► In a profile, a player pays for the edges she uses.
- ► The **cost of a profile** is the sum of the costs of all the players.
- ► A social optimum SO is a cheapest profile.
- ► An **NE** is a **stable profile** from which no player can make a beneficial move unilaterally.

S	1	2	1 pays	2 pays	Total
5	Outer	Outer	4	6	10
	Outer	Middle	4	7	11
2 2	Middle	Outer	7	6	13
(t_2)	Middle	Middle	5/2 + 2	5/2 + 2	9

- **SO:** \langle Middle, Middle \rangle , NE: \langle Outer, Outer \rangle
- **Congestion** cost function: e.g. f(x) = ax + b.

Under- and Over-approximations $\mathcal{N}^{\downarrow}[\alpha]$ and $\mathcal{N}^{\uparrow}[\alpha]$ of an NG \mathcal{N}

- even in \mathcal{N}^{\uparrow}
- **Theorem**: Consider an abstract NE P in $\mathcal{N}^{\downarrow}[\alpha]$. There exists a profile in $\alpha^{-1}(P)$ that is a concrete NE in \mathcal{N} .

An Abstraction-Refinement Framework to Find an NE

Find an abstract-NE using an abstraction-refinement framework.

- \blacktriangleright ln \mathcal{N}^{\downarrow} , each player has fewer strategies and pays at least as much as in \mathcal{N} . In \mathcal{N}^{\uparrow} , each player has more strategies and pays not **more** than in \mathcal{N} .
- **Transition Relations**: $E^{\downarrow}(a, a')$ iff for every concrete vertex $v \in a$, there is a concrete vertex $\mathbf{v}' \in \mathbf{a}'$ such that $\mathbf{E}(\mathbf{v}, \mathbf{v}')$. $\mathbf{E}^{\uparrow}(\mathbf{a}, \mathbf{a}')$ iff there exist concrete vertices $v \in a$ and $v' \in a'$ such that E(v, v').

Cost functions:

	\mathcal{N}^{\downarrow}	\mathcal{N}^{\uparrow}
Transitions	Must	May
Cost	Max	Min
Effect of load in CS-NG	1	Sum
Effect of load in CON-NG	Sum	1

An Example

Experimental Results

The number of iterations to find an abstract-NE (y-axis) as |V|, k, and $|\mathbf{W}|$ increase (x-axis); $|\mathbf{V}|$: number of vertices, k: number of players, and |W|: range on weights on the edges.

The ratio between the size (vertices and edges) of the concrete and truncated networks, namely, $\mathcal{N}_{|\mathbf{P}_{\alpha}}$ (y-axis) as $|\mathbf{V}|$, k, and $|\mathbf{W}|$ increase

A CON-NG \mathcal{N} (left) and its approximations \mathcal{N}^{\downarrow} and \mathcal{N}^{\uparrow} (right). Edges in \mathbf{E}^{\downarrow} are solid. Edges in $\mathbf{E}^{\uparrow} \setminus \mathbf{E}^{\downarrow}$ are dashed. Edges with no specified cost have cost **0**.

Objective

space [1].

Find an SO and an NE of an NG by reasoning about its underand over-approximations. **Inputs**: An NG \mathcal{N} , and an abstraction function $\alpha : \mathbf{V} \to \mathbf{A}$ that abstracts the set V of vertices to a smaller set A of abstract vertices. ► Theorem: There exists an NE in every NG [3]. ► Theorem: Complexity of finding an NE is PLS-complete [2]. Counterexample guided abstraction refinement (CEGAR) has been successfully used in verification to reason about systems with large state

(**x**-axis).

The **blue lines** indicate the ratios between the **vertices** while the **red lines** indicate the ratios between the **edges**.

References: Bibliography

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction refinement for symbolic model checking. Journal of the ACM, 50(5):752–794, 2003.

A. Fabrikant, C. Papadimitriou, and K. Talwar. The complexity of pure nash equilibria. In Proc. 36th ACM Symp. on Theory of Computing, pages 604–612, 2004.

R. W. Rosenthal.

A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory, 2:65–67, 1973.