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Network games [3]

I A network game (NG) is played on a weighted directed graph.
I Multiple players; each player has to find a path from a source to a

target.
I A strategy is a path of a player from her source to destination.
I In a cost-sharing game (CS-NG), the players share the cost of an edge.
I A profile is a tuple of strategies, one for each player.
I In a profile, a player pays for the edges she uses.
I The cost of a profile is the sum of the costs of all the players.
I A social optimum SO is a cheapest profile.
I An NE is a stable profile from which no player can make a beneficial

move unilaterally.
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Outer Outer 4 6 10

Outer Middle 4 7 11

Middle Outer 7 6 13

Middle Middle 5/2 + 2 5/2 + 2 9

SO: 〈Middle,Middle〉, NE: 〈Outer,Outer〉
I Congestion cost function: e.g. f(x) = ax + b.

Under- and Over-approximations N ↓[α] and N ↑[α]of an NG N

I In N ↓, each player has fewer strategies and pays at least as much
as in N . In N ↑, each player has more strategies and pays not
more than in N .

I Transition Relations: E↓(a, a′) iff for every concrete vertex v ∈ a, there
is a concrete vertex v′ ∈ a′ such that E(v, v′). E↑(a, a′) iff there exist
concrete vertices v ∈ a and v′ ∈ a′ such that E(v, v′).

I Cost functions:
N ↓ N ↑

Transitions Must May

Cost Max Min

Effect of load in CS-NG 1 Sum

Effect of load in CON-NG Sum 1

An Example
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A CON-NG N (left) and its approximations N ↓ and N ↑ (right).
Edges in E↓ are solid. Edges in E↑ \ E↓ are dashed. Edges with no
specified cost have cost 0.

Objective

Find an SO and an NE of an NG by reasoning about its under-
and over-approximations.
Inputs: An NG N , and an abstraction function α : V→ A that
abstracts the set V of vertices to a smaller set A of abstract vertices.

I Theorem: There exists an NE in every NG [3].
I Theorem: Complexity of finding an NE is PLS-complete [2].

I Counterexample guided abstraction refinement (CEGAR) has been
successfully used in verification to reason about systems with large state
space [1].

Find an SO and an NE in N using N ↓ and N ↑

I Theorem: If α2 � α1, then SO(N ↓[α2]) ≤ SO(N ↓[α1]) and
SO(N ↑[α1]) ≤ SO(N ↑[α2]), i.e. successive refinements reduces
the gap between the upper and the lower bounds of an SO in N .

I Abstract NE: An NE in N ↓ such that no player has beneficial deviation
even in N ↑.

I Theorem: Consider an abstract NE P in N ↓[α]. There exists a profile
in α−1(P) that is a concrete NE in N .

An Abstraction-Refinement Framework to Find an NE

I Find an abstract-NE using an abstraction-refinement framework.

Find an NE 1

∃i, π′i 6= πi s.t.

cost↑i (P
′
α) < cost↓i (Pα)

2π′i is spurious 3a

AbsNE-loop

No: Pα = 〈π1, ..., πk〉

Yes

Pα = 〈π1, ..., πk〉 in N ↓[α]

P ′α = Pα[i← π′i]

is an abstract NE

3b

cost↓i (P
′
α) > cost↑i (P

′
α)

3c

cost↓i (Pα) > cost↑i (Pα)

Input: N and α

Refine α using one or
more of the following.

Find an NE in N |Pα

Experimental Results

The number of iterations to find an abstract-NE (y-axis) as |V|, k,
and |W| increase (x-axis); |V|: number of vertices, k: number of players,
and |W|: range on weights on the edges.

The ratio between the size (vertices and edges) of the concrete and
truncated networks, namely, N|Pα (y-axis) as |V|, k, and |W| increase
(x-axis).
The blue lines indicate the ratios between the vertices while the red
lines indicate the ratios between the edges.
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